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A r&able prqxwation of S%yanm~y~4-th ad its incorporation into oligoribnucleoddes is reported. 
Deproteciion qf oligo&otuuleotidks with DBU in acetonitrile followed by methanolic amraonio allmvs the use 
of standard N-benwyl and N-isoburyrylp7otectedp~~~r~t~. Cleavage of hammerhead rikqvmes using 
GCGCCGAAACACCGUGPUJCUCGAGC as the e&&d substrate and GGCUCGACUGAUGAGGCGC as 
rhe ribozyme resulted in a halving of the cleavage rate wher compared to the ummdifkd substrate, which is 
consistent with the proposal that the As-U1 7 base pair plays a key role in the active structure. 

Syntktically. sulphur has been incorporated into the phosphate backbonel2. sugars and basest of 
oligonucleotides. Two major approaches for incorpomting tbi&ases into oligodeoxynucleotides, using the 
standard phosphoramidlte approach, are currently in use. The first involves incmpomtion of either a S- 
cyanoethy14-6 or S-pivaloyloxymethy17.* protected thiopyrimidine or thiopurine into the growing oligonucleotide, 
followed by &protection. The other involves the incorpomdon of a suitably modified nucleotide which can be 
further altered after its incorporation into the oligonucleotide. Using this method a number of modified 
oligonucleotides can be pmpared from the same synthesis 9. 4-Thiopytimidlnes and 6-thiopurines have been used 
for post-synthetic modificatiot@ and photo cross-linkingttv*2. 

The thione functionality also has different H-bonding properties to the carbonyl group and so can be used 
to p&e protein-nucleic acid and oligonucleotide-oligonucRot.ide 
interactions. 

Most of the above moditications have heen on oligodeoxy- 
nucleotides, We report here the synthesis of S4-cyanoethyl-4- 
thiouridlne and to our knowledge the first reported incorporation 
of Qthiourldine into a synthetic oligoribonucleotide, namely the 
24-mer ribozyme substrate GCGCCGAAACACCGUG[~UJ- 
CUCGAGC, which is selectively cleaved at ~1*-~19 by a 19- 
nucleotide ribozyme13 (Fig. 1). Its rate of cleavage is compared 
with that of the wild-type strand In a preliminary experiment 4- 
thiouridine was also * mcorpomted into the dirner [4SLJIG. 

Coleman and Siedlecki 14 have reported the synthesis of 
S4-cyanoethyl-protected 4-thiouridine and 2’-deoxy-dthio- 

Figure 1 Hamtnexhead ribozyme. 
Nuclcotides in boxes are essential for function 

uridine via reaction of the corresponding 4-tri-O-isopropyl- 
benzenesulphonyl imidates with 3mercaptopropionitrile (5 equiv) in aqueous ethanol (1.5 equiv QCG3, 2S°C, 3 
h). Our attempts only afforded the corresponding hydrolysis products 2’,3’.5’-ai-O-trimylsilyluridine or 
2’,3’,5’-tri-O-f-butyldimethylsilyluridi. Gur final uppraach is shown in the Scheme. 2.3’~O- 
Isopropylideneuridinel* was tetrahydropyranylated (3,4dihydro-2Ff-pyran, pyridiniump-toluenesulphonate, 
CHzCl;?, 1.5 h) to 1 in good yield (85%) 16. We found that this protection strategy gave optimum results in the 
following steps. The reagents are cheap and the nactions proceed cleanly with good yields. A good yield (79 
%) of the corresponding 4-O-u-i-isopropylbenzenesulphonyl imidate (2) was achieved by the method of Gaffney 
et ~1.~7. We could only achieve low yields using Bischofberger’st* approach. Reaction of 2 with 
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HSCH$H$JN~9 (1.2 equiv.) and N-methylpyrrolidine (1.5 equiv.) in CH2Cl2~ produced the S4-cyanoethyl 
derivative21 in high yield (84 %). Introduction of the S4-cyanoethyl group was also attempted using an approach 
reported by Connollfl who prepared fi-cyancethyl-protected 4-thiothymidine based on the method described by 
Miyasaka et a1.z Unfortunately 3 was one of four products, being isolated in 15% yield Depmtection of the 
acid-labile groups on the ribose was achieved with trifluoroacetic acid/water/CH&Jl~ (4.5~0.55). Deprotection 
was complete within 45 min at RT affkding 423 in high yield (86 96). Tritylationx and phosphitylation= to 
yield 6 were performed using standard procedures 24 Unfortunately the selective 2’-silylation procedure 
developed by Ogilvie et al.27 produced very low yields of 5. Better yields (46%) were obtained using a standard 
silylation proc&ue [TBDMS-Cl(3 equiv), pyridine, 60 hl 28. The 3’-protected isomer was also obtained (16%) 
but WAS readily separated27 using flash chromatography (diethyl ether/light petroleum 3: 1). 

Scheme 0 0 
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(1) R = OTPS (2). 
= SCH2CH2CN (3) 

(9 

(i) 2,2dimethoxypropme, p-toluenesulphoniic acid, DMF (ii) 3,4dihydro-2&pyran, 
pyridinium ptohmne~ulpho~te, CH$& (iii) 2,4,6-tri-G~0pr0pylbenzencsulphoayl 
chloride, DMAP. iP@% CH&Iz (iv) HSCH$X$JN. N-methylpyrrolidii. CH2C12. 
(v) WA, H20, CHzCl2 (vi) 4,4’dimethoxyIrityl chloride, pyridine (vii) TBDMS-CI, 
pyridine (viii) iR#F’(Cl)OCH~CH~CN, DMAP, iP@Et, CH& 

Incorporation of 6 into the dimer and 24-mer wem canied out on an ABI 391PCR-Mate DNA synthesiser 
(Applied Biosystems). Phosphoramidites were from Chemgene Inc., Waltbam, Mass., the bases being benzoyl- 
protected for C and A and isobutyryl-protected for G. CPG-benzoylG and -benzoylC were f?om Millipore. The 
S-cyanoethyl ether and O-cyanoethyl phosphate esters were depmtected using 0.3 M DBU in acetonitriIe for 1 h 
at room temperatum4. Cleavage fmm the support and &protection of the exocyclic amine protecting groups was 
achieved in a sealed container with freshly prepared metbanolic ammonia (methanol at 0°C purged with NH3 for 
30 min) at 3oOC for 24 h. After evaporation the residue was 2’-O-TBDMS &protected using either NBt3.3HF 
for 16 h (dimer)s or 1 M TBAF in THF (24~mer) at 30°C for 30 h. Poor solubility of the 24-mer in NEt3.3HF 
precluded its use. Based on trityl assays the overall yield of the 24-mer was 67.5% (average stepwise yield 
98.3%) with incorporation of 4slJ lower at 90%. Both componds were purified by HPLC30 using a linear 
gradient of acetonitrile from 2-10% over 40 min. Buffer A was 0.1 M ammonium acetate pH 6.5, buffer B 50% 
acetonitrile and 0.05 M ammonium acetate, pH 6.5. Two major products were isolated, the required modified 
24-mer along with the unmodified analogue. The slightly longer retention time of the modified 24-mer is 
consistent with the presence of a mom hydrophobic sulphur atom. No separation was observed using PAGE. 
This is in agreement with Favre er a1.8 who required a combination of agarose affinity chromatography and 
affiiity electmphoresis to separate a 2’-deoxy-4-thiouridine-containing 14-mer from non-thiolated 14-mer. The 
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final yield after HPLC purification was 4 16 pg or 7.5% based on the final tityl assays’. Approximately 208 pg 

ofummdified24merwasalsoisolated. Thedimrwaspmpamlwitha92%conplingstep.Thefinalpur&d 
yield was approximately 400 l.tg (65 96) based on t&y1 assay. It ls possible that better yields would be obtained 
using the faster base&protecting PAC mp2 or FGD tABI) phosp-ws. 

TheWspecaaoftht2cl-mranddimr(pig.2)conFeinptaksat342end338nm,~vely.whichis 
characteristic of the thione c-ore. Composition of the 2rl-llker was un&med by HFLC (Fig. 3) after 
base composition analysis3. When recorded at 332 nm one peak was observed whose retemion tim 
corresponded to sn authentic sample of 4-thiomidhuz. Similar retention times for w and G mpircd that 
separate HPLC traces be recor&d at 260 and 342 nm rather than simply recording one and changing the 
observation wavelength when 4SU eluted. Figure 3 shows a superimposition of the two traces. 

Fgure3. HPLCanalysisafterbeuecumpositionanalysisofGCG- 
CCGAAACACCGUG~s~CUCGAGC. Tmccs mcohd at 260 
nmforC.U.GandA. Sepmatetrserecodedat332nmfor4sU 
(iijection sample six-times lslger for this trace). 

A number of modified oligoribonuckotides have been prepared in order to study the mechanism of 
hammerhead ribozyrne cleavage3*. Replacement of exocyclic oxygen with sulphur introduces a bulkier and 
weaker H-bonding atom but the same ring stmcttnc is retained. Single turnover reactions, carried out in 

duplicate, were performed at 37OC in a volum of 40 t.iL 50 mM Tris-HQ, pH 7.3. with S-3*P-labelied substrate 

at a concentration of 0.2 p.M and a riboxyme concentration of 1 t&l. Cleavage was intlated by the addition of 

MgCl2 to a final concentration of 10 mM. Aliquots of 4 pL were removcd at 1 min intervals and quenched with 5 

pL of 8 M urea and 50 mM EDTA. Tbe samples were analysed by PAGE on 20% denaturing gels and the 
resulting autoradiographs subjected to laser scanning densitometry. The half-life for cleavage of the mcdifii 

strand was 450 f 20 s compared with the unmodified strand whiih was 240 f 10 s. This represents a doubling 
of the half-life and is consistent with the H-bond between the A9-U17 base pair being important in the active 
structure. Slim and Gait36 showed that the ri- had lost most of its activity when the exccyclic amine was 
removed from As. 

In conclusion, @-cyanoethyl-4-thiouridine was prepared via a reliable and cheap route. Its incorporation 
into a dimer and 24mer oligorihonucieotide was perfcrmed in reasonable yields especially given the use of non- 
fast-deprotecting phosphoramidites. The moditled 24-mer was cleaved at half the rate of the wild-type suand. 

This work was supported by grants from the SERC and the Wellcome Trust. We would also like to thank 
Dr. J Fisher for NMR spectra and Prof. B. Connolly, University of Newcastle, for useful advice. 
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